
Chapter 1

Double And Triple Integrals

1.1 Integral Over An Interval

We start by reviewing integration theory of functions of a single variable.

Given an interval [a, b], a partition P on [a, b] is a collection of points {xj} satisfying
a = x0 < x1 < · · · < xn = b. The norm of the partition P , denoted by {P}, is the
maximum of ∆xj = xj − xj−1, j = 1, · · · , n. It measures how fine the partition is. Let
f be a function defined on an interval [a, b]. The Riemann sum of f with respect to the
partition P is defined to be

R(f, P ) =
n∑
j=1

f(zj)∆xj ,

where the tag zj is an arbitrary point taken from the subinterval [xj−1, xj]. The Riemann
also depends on the choice of tag points, but we simplify things by using the same notation.

The function f is called integrable if there exists a real number α such that for every
ε > 0, there is some δ > 0 so that

|R(f, P )− α| < ε, ∀P , ‖P‖ < δ .

We call α the integral of f over [a, b] and denote it by
ˆ b

a

f ,

ˆ b

a

f dx , or

ˆ b

a

f(x) dx .

When f is non-negative, obviously the Riemann sums are approximate areas and the
integral is the area of the set bounded by the x-axis, the graph of f , and the vertical lines
x = a and x = b.

An immediate question arise: Are there any non-integrable functions? The answer is
yes. Let me give you two examples.
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First, consider the function f(x) = 1/x , x ∈ (0, 1] and f(0) = 0. This is a function
defined on [0, 1], which is unbounded near 0. Suppose on the contrary that f is integrable.
For ε = 1, there is some δ such that

|R(f, P )− α| < 1 , ∀P, ‖P‖ < δ.

Fix one such P . The inequality |R(f, P )− α| < 1 is equivalent to −1 < R(f, P )− α < 1.
In particular, R(f, P ) − α < 1, that is, R(f, P ) < 1 + α, so f(z1)∆x1 < 1 + α +∑n

j=2 f(zj)∆xj ≡ β which is a fixed number. It shows that 1/z1∆x1 < β . Here β and
∆x1 are fixed number, but the tag point z1 can be chosen arbitrarily from (0, 1]. By
choosing it as small as you like, you can make 1/z1∆x1 as large as you like, and this
contradicts the inequality 1/z1∆x1 < β. Hence f is not integrable. In fact, it can be
shown that all unbounded functions are not integrable.

Second, not all bounded functions are integrable. Consider the function g on [0, 1]
defined by g(x) = 0 if x is irrational and g(x) = 1 if x is rational. g is a function bounded
between 0 and 1. As there are rational and irrational numbers in any interval, for each
partition P , when we pick a rational number zj from [xj, xj+1] to form a tagged partition,
the Riemann sum R(g, P ) =

∑
j g(zj)∆xj =

∑
j ∆xj = 1. On the other hand, picking tag

points wj to be irrational instead, g(wj) = 0 so R(g, P ) =
∑

j g(wj)∆xj = 0. You can see
that by choosing different tags, the Riemann sums equal to 1 or 0. It cannot converge to
a single number α.

Fortunately, most functions people encountered in applications are integrable. It suf-
fices to know that all continuous functions are integrable. In fact, all functions with jump
discontinuity are also integrable.

Coming to the evaluation of an integral, from the definition of integrability we have
the following approach, namely, take a sequence of tagged partitions {Pn} whose norms
tend to 0, then ˆ b

a

f dx = lim
n→∞

R(f, Pn) .

Although looking very simple, this method is not practical since it involves a limit process
which becomes quite complicated even for very simple functions. You may try it on the
functions f(x) = x2 or sin x. Now, we are thankful to Issac Newton for his discovery
that the evaluation of an integral can be achieved by the following scheme. First, call
a function F a primitive function for a given function f if F is differentiable and its
derivative is equal to f , that is, F ′ = f . When f is integrable, Newton’s fundamental
theorem of calculus asserts thatˆ b

a

f dx = F (b)− F (a) .

As a result, using the simple fact that a primitive function of x2 is x3/3,

ˆ b

a

x2 dx =
b3

3
− a3

3
.
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Likewise, a primitive function of sinx is given by − cosx, hence

ˆ b

a

sinx dx = cos a− cos b .

Integrals that had been troubled people since the ancient times are evaluated in this way.

1.2 Double Integral in an Rectangle

Now we come to the integration of functions of two variables. This is a direct extension of
what we did in the single variable case where now an interval is replaced by a rectangle.

Let R = [a, b]× [c, d] be a rectangle and f a bounded function defined in R. Likewise,
here a finite set of points

{(xi, yj) : a = x0 < x1 < · · · < xn = b, c = y0 < y1 < · · · < ym = d, }

is called a partition on R. We denote

Rij = [xi, xi+1]× [yj, yj+1] ,

∆xi = xi+1 − xi , ∆yj = yj+1 − yj ,

and let ‖P‖ be the maximum of all ∆xi,∆yj’s. Pick a point pij from Rij for each (i, j)
we form a collection of tags. A partition together with a choice of tags is called a tagged
partition.

Let f be a function defined in R. Associate to each tagged partition (P, {pij), we form
a Riemann sum

R(f, P ) =
∑
i,j

f(pij)|Rij| ,

where |Rij| = ∆xi∆yj . A function is called (Riemann) integrable if there exists a number
α such that, for each ε > 0, there is some δ > 0 so that

|R(f, P )− α| < ε , ∀P, ‖P‖ < δ .

The number α is called the (Riemann) integral of f over R and is usually denoted by

¨
R

f dA , or

¨
R

f dA(x, y) , or

¨
R

f(x, y) dA(x, y) .

When f is nonnegative, the Riemann sums are approximate volume and the Riemann
integral is the volume of the solid formed between the graph z = f(x, y) and the xy-plane
over R.
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Just as in the single variable case, unbounded functions are not integrable. In the
following discussion, it is implicitly assumed all functions in concern are bounded.

Using the definition of Riemann integral, it is routine to verify that the following basic
properties hold:

Theorem 1.1. Let f and g be integrable in R. For α, β ∈ R.

1. αf + βg is integrable and¨
R

(αf + βg) dA = α

¨
R

f dA+ β

¨
R

g dA .

2. fg is integrable.

3. f/g is integrable provided that |g| ≥ C for some positive constant C.

4. ¨
R

f dA ≥ 0 ,

whenever f is non-negative.

The first property shows that all integrable functions form a real vector space and the
mapping

f 7→
¨
R

f dA

is a linear mapping from this vector space to the space of real numbers. The second
and third properties show how nice the integration interacts with algebraic operations of
functions.

The fourth property, which may be termed as positivity preserving (or more precisely
non-negativity preserving), is an essential one. Note that f ≥ 0 and

˜
R
f dA = 0 do

not necessarily implies f ≡ 0. It suffices to observe that a nonnegative function which
vanishes everywhere except at finitely points satisfy these two conditions. On the other
hand, it is true that they imply f ≡ 0 when f is continuous.

Combining linearity and positivity preserving, we have¨
R

g dA ≥
¨

f dA ,

provided g ≥ f in R.

Theorem 1.2. 1. The constant function c is integrable and¨
R

c dA = c|R| , |R| ≡ (b− a)(d− c) .
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2. There are non-integrable functions in each rectangle.

3. Every continuous function is integrable.

(a) is easily proved. (b) can be shown by considering the function ϕ(x, y) = 0 if x is a
rational number in [a, b] and ϕ(x, y) = 1 when x is irrational. Since there are rational and
irrational points in each subrectangle Rij, by choosing suitable tags, ϕ(pij) could be 0 or
1. Consequently, each f(pij)|Rij| is either equal to 0 or |Rij|. It follows that the Riemann
sum of the same partition could be 0 or

∑
i,j |Rij| = (b − a)(d − c). It is impossible to

find a number α such that |R(f, P )− α| < ε for all tags.

We will not prove (c), but simply point out that it is based on a fundamental result,
which will be used later.

Theorem 1.3. (Uniform Continuity Theorem) Every continuous function in a re-
gion R satisfies the following property: Given ε > 0, there is some δ > 0 such that

|f(x, y)− f(x′, y′)| < ε ,

for all (x, y), (x′, y′) ∈ R,
√

(x− x′)2 + (y − y′)2 < δ .

Here our concern is how to evaluate a double integral. Thankfully we have the follow-
ing result which reduces it to an iterated integral (two integrals of a single variable). We
do not need a new version of the fundamental theorem of calculus.

Theorem 1.4. (Fubini’s Theorem) Let f be a continuous function in R. Then

¨
R

f dA =

ˆ b

a

ˆ d

c

f(x, y) dydx .

The idea is simple. The double integral can be approximated by Riemann sums.
Taking tags of the form (x∗i , y

∗
j ), we have

¨
R

f dA ≈
∑
i,j

f(x∗i , y
∗
j )∆xi∆yj =

∑
i

(∑
j

f(x∗i , y
∗
j )∆yj

)
∆xi .

When ‖P‖ is very small, both ∆yj and ∆xi are also very small,

∑
i

(∑
j

f(x∗i , y
∗
j )∆yj

)
∆xi ≈

∑
i

ˆ d

c

f(x∗i , y) dy ∆xi ≈
ˆ b

a

(ˆ d

c

f(x, y)dy

)
dx .

A similar result holds when the role of x and y are switched. In other words,

¨
R

f dA =

ˆ d

c

ˆ b

a

f(x, y) dxdy .
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It implies the “commutative relation”

ˆ b

a

ˆ d

c

f(x, y) dydx =

ˆ d

c

ˆ b

a

f(x, y) dxdy .

Example 1.1 Evaluate ¨
R

xy2 dA ,

where R is the rectangle [0, 1]× [0, 2]. By Fubini’s Theorem,

¨
R

xy2 dA =

ˆ 2

0

ˆ 1

0

xy2 dy dx

=

ˆ 2

0

xy3

3

∣∣∣y=1

y=0
dx

=

ˆ 2

0

x

3
dx

=
2

3
.

Alternatively,

¨
R

xy2 dA =

ˆ 1

0

ˆ 2

0

xy2 dx dy

=

ˆ 1

0

x2y2

2

∣∣∣x=2

x=0
dy

=

ˆ 1

0

2y2 dy

=
2

3
.

Sometimes, the order of integration matters.

Example 1.2 Evaluate ¨
R

x sinxy dA ,

where R = [0, 1]× [0, π].

We have ¨
R

x sinxy dA =

ˆ π

0

ˆ 1

0

x sinxy dxdy

=

ˆ π

0

(
− cos y

y
+

sin y

y2

)
dy .
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At this point we don’t know how to proceed further. So we change the order of integration.

¨
R

x sinxy dA =

ˆ 1

0

ˆ π

0

x sinxy dy dx

=

ˆ 1

0

x× − cosxy

x

∣∣∣y=π

y=0
dx

=

ˆ x2

0

0 dy +

ˆ 1

0

(− cos πx+ 1) dx

= 1 .

Example 1.3 Let f be the function in R = [−1, 1]× [0, 1] given by f(x, y) = 2, x2 < y
and f(x, y) = 0, x2 > y. Evaluate

¨
R

x2f(x, y) dA .

By Fubini’s Theorem,

¨
R

x2f(x, y) dA =

ˆ 1

−1

ˆ 1

0

x2f(x, y) dydx .

As

ˆ 1

0

f(x, y) dy =

ˆ x2

0

f(x, y) dy +

ˆ 1

x2
f(x, y) dy

=

ˆ 1

x2
2 dy

= 2(1− x2) ,

we have

¨
R

x2f(x, y) dA =

ˆ 1

−1

x2 × 2(1− x2) dx = 2

(
x3

3
− x5

5

) ∣∣∣1
−1

=
8

15
.

1.3 Regions In The Plane

First of all, a C1-curve is a curve that admits a tangent at every point and the tangent
changes continuously as the points vary. In a suitable coordinates, the curve can be locally
expressed as the graph (x, f(x)) of a C1-function, that is, a function whose derivative exists
and is continuous. A curve is simple if it has no self-intersection point. It is closed if it
closes up and has no endpoints. Intuitively speaking, a simple closed curve looks like
a deformed circle. We will also consider piecewise C1-curves, that is, those continuous
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curves which are C1 except at finitely many points. A set which is bounded by one or
several closed piecewise C1-curves is called a region or a domain. This definition is not
consistent with the usual definition of a region in mathematics literature. However, we
will adopt this definition by following our textbook.

Here are some examples of regions.

• Dr = {(x, y) : x2 +y2 < r2} is the disk, the region bounded by the unit circle which
is a simple closed C1-curve.

• {(x, y) : x2/a2 + y2/b2 = 1}. The ellipse is also a simple closed C1-curve which
bounds a region.

• Let C1 and C2 be two circles with C1 contained in C2. These two circles bound a
region. The punctured disk Dr \ {(0, 0)} is also a region where the point {(0, 0)}
may be viewed as a degenerate circle.

• Let ∆ be the points lying on or inside a triangle. A triangle is a simple, closed,
piecewise C1-curve composed of three line segments. Tangents do not exist at the
three vertices.

• Similarly, every polygon whose boundary is a simple, closed piecewise C1-curve is a
region.

• The cardioid {(r, θ) : r = 1 + cos θ)} (in polar coordinates) is a simple closed,
piecewise C1-curve which admits a non-differentiable point (ie, a cusp) at the origin.
It also bounds a region.

A region must be bounded from its definition. It consists of interior points and bound-
ary points. In this chapter,

A curve always means a simple, piecewise C1-curve and a region is the plane set
bounded by one or several simple, closed piecewise C1-curves or points.

In Advanced Calculus I, the objects of study are continuous and differentiable func-
tions. In integration theory the classes of functions are wider. Just like we are able to
integrate functions with discontinuity jumps in a single variable, we can integrate func-
tions which admit discontinuous points along some curves.

1.4 Double Integral In A Region

Now we consider double integrals over a region D which is not necessarily a rectangle.
A quick way to achieve this goal is to extend f which is only defined in D to the entire
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space by setting it to be zero outside D. We may call it the extension of f from D. By
picking a rectangle R containing D, we may simply define

¨
D

fdA =

¨
R

f̃ dA ,

where f̃ is the extended function of f from D. To justify this approach, we need to
clarify two points. The first one is the definition must be independent of the choice of the
rectangle. The next one seems more serious. Namely, even if the function f is continuous
in R, the extended function f̃ may develop a jump discontinuity across the boundary of D.

Theorem 1.5. Let R1 and R2 be two rectangles containing D in their interior. Then

¨
R1

f̃ dA =

¨
R2

f̃ dA ,

provided f̃ is integrable in R1 and R2.

Proof. Since D ⊂ R1 ∩R2 ⊂ Ri, i = 1, 2, it suffices to show

ˆ
R1

f̃ dA =

ˆ
R3

f̃ dA ,

where D ⊂ R3 ⊂ R1. But this is obvious as f̃ ≡ 0 in R1 \R3.

Theorem 1.6. Every bounded function in a rectangle R which is continuous except on
one or several piecewise C1-curves is integrable.

This is a reasonable generalization of the integrability of functions which are piecewise
continuous in the single variable case.

Proof. We will give a proof for the special case where f in continuous in the rectangle
R = [a, b]× [c, d] except at a horizonal line y = α, α ∈ (c, d). Given ε > 0, we first fix a
small number ρ such that Mρ(b− a) < ε/3 (M is a bound on |f |). Next we define a new
function fρ which is equal to f in [a, b] × [c, α − ρ] and [a, b] × [α + ρ, d], and, for linear
from (x, α− ρ) to (x, α + ρ). fρ is continuous in R and integrable. Now, for the given ε,
we can find some δ such that∣∣∣∣R(fρ, P )−

¨
R

fρ dA

∣∣∣∣ < ε

2
, ∀P, ‖P‖ < δ .
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Letting R1 = [a, b]× [c, α] and R2 = [a, b]× [α, d], we have∣∣∣∣R(f, P )−
ˆ b

a

ˆ d

c

f(x, y) dydx

∣∣∣∣ ≤ |R(f, P )−R(fρ, P )|

+

∣∣∣∣R(fρ, P )−
ˆ b

a

ˆ d

c

fρ dydx

∣∣∣∣
+

∣∣∣∣ˆ b

a

ˆ d

c

fρ dydx−
ˆ b

a

ˆ d

c

f dydx

∣∣∣∣
≡ A+B + C .

To estimate (A), observing that R(f, P )−R(fρ, p) =
∑

i,j(f(zij)− fρ(zij))|Rij| where
the summation is over all those subrectangles Rij that touch the strip [a, b]× [α−ρ, α+ρ].
We have

A = |R(f, P )−R(fρ, p)| ≤
∑
i,j

|f(zij)− fρ(zij)||Rij| ≤ 2M × (b− a)× 2(ρ+ δ) .

Next, by Fubini’s Theorem, B ≤ ε/2 by our choice of P . Third, since fρ = f outside
[a, b]× [α− ρ, α + ρ], we have

C ≤ 2M(b− a)× 2ρ .

Putting these three estimates together, we see that∣∣∣∣R(f, P )−
ˆ b

a

ˆ d

c

f dydx

∣∣∣∣ < ε

2
+ 4M(b− a)(ρ+ δ) + 4M(b− a)ρ .

The left hand side of this estimate is independent of ρ. Letting ρ→ 0, we obtain∣∣∣∣R(f, P )−
ˆ b

a

ˆ d

c

f dydx

∣∣∣∣ < ε

2
+ 4M(b− a)δ .

Now we restrict δ so that 4M(b− a)δ < ε/2, we conclude that∣∣∣∣R(f, P )−
ˆ b

a

ˆ d

c

f dA

∣∣∣∣ < ε ,

whenever ‖P‖ < δ. So f is integrable in R and in fact

¨
R

f dA =

ˆ b

a

ˆ d

c

f dydx .
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Based on these two theorems, we are able to define the integral of a bounded function
f over any bounded subset E in R2 by setting

¨
E

f dA ≡
¨
R

f̃ dA , (1.1)

where R is any rectangle containing E. The function f is called integrable over E provided
f̃ is integrable over R. Similar to what is asserted in Theorem 1.5, the integrability of f
is independent of the choice of R. When f is nonnegative, the integral of f over D is the
volume of the solid bounded between the graph of f and the xy-plane over the region D.
When we take f ≡ 1, the integral, which becomes

¨
D

1 dA ,

reduces to the area of D.

Using (1.1) we have the following extension of Theorem 1.1.

Theorem 1.1’. Let f and g be integrable in the (bounded) region D. For α, β ∈ R.

1. αf + βg is integrable in D and

¨
D

(αf + βg) dA = α

¨
D

f dA+ β

¨
D

g dA .

2. ¨
D

f dA ≥ 0 ,

provided f is non-negative.

In Theorem 1.1 (2) and (3) are concerned with the product and quotient of integrable
functions. However, functions appearing in applications are mostly continuous ones. For
this reason we do not formulate them in Theorem 1.1’.

Next we show the double integration over a curve vanishes. In other words, a curve is
too thin to support a volume.

Theorem 1.7. Let f be a bounded function on a curve C. Then f̃ is integrable and

¨
C

f dA = 0 .
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Proof. Let us take R = [a, b]× [c, d] and consider the special case that C = {(x, ϕ(x)} is
the graph of a continuous function in [a, b] in R. By Theorem 1.6, f̃ is integrable in R.
We have ¨

C

f dA =

¨
R

f̃ dA (by definition)

=

ˆ b

a

ˆ d

c

f̃ dydx (Fubini’s)

=

ˆ b

a

ˆ ϕ(x)

c

f̃(x, y) dydx+

ˆ b

a

ˆ d

ϕ(x)

f̃(x, y) dydx

= 0 ,

since f̃(x, y) = 0 for all y in [c, ϕ(x)) and (ϕ(x), d].

We will associate a set with a function. In this way, sets can be manipulated as
functions.

Let E be a nonempty set in R2 (actually it could be defined in Rn for any n.) Its
characteristic function χE is defined to be χE(x, y) = 1 , (x, y) ∈ E, and χE(x, y) = 0
otherwise. Also set χφ ≡ 0. We point out the following relations:

• χA∪B = χA + χB − χA∩B .

• χA∩B = χA · χB .

• χA ≤ χB if and only if A ⊂ B.

Combining the first two, we have

χA∪B = χA + χB − χA · χB .

We are ready to prove the following frequently used result.

Theorem 1.8. Divide the region D by a piecewise C1-curve C to obtain two regions D1

and D2. For any integrable function f in D, f is also integrable in Di, i = 1, 2. Moreover,¨
D

f dA =

¨
D1

f dA+

¨
D2

f dA .

Proof. Since the boundary of Di are composed of piecewise C1-curves, according to Theo-
rem 5, the characteristic functions χDi

are integrable, so fχDi
, as product of two integrable

functions, is also integrable. From C = D1 ∩D2 and χD = χD1 + χD2 − χD1∩D2 , we have
χD = χD1 + χD2 − χC . Let R be a rectangle containing D in its interior. We have¨

D

f dA =

¨
R

f̃ dA

=

¨
R

f̃χD1 dA+

¨
R

f̃χD2 −
¨
R

f̃χC .
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The function f̃χD1 is equal to f in D1 and 0 outside D1. Therefore, it is the extension of
f from D1, that is, ¨

R

f̃χD1 dA =

¨
D1

f dA .

Similarly, we have ¨
R

f̃χD2 dA =

¨
D2

f dA ,

and ¨
R

f̃χC dA =

¨
C

f dA .

Thus, ¨
D

f dA =

¨
D1

f dA+

¨
D2

f dA−
¨
C

f dA ,

and the desired formula holds as the last term vanishes according to Theorem 1.7.

Now we come to evaluation of a double integral in a region. We have discussed how to
do it in a rectangle. We will work on two types of special regions. Type I is of the form

{(x, y) : f1(x) ≤ y ≤ f2(x), a ≤ x ≤ b} , fi, i = 1, 2, is continuous ,

and Type II is

{(x, y) : g1(y) ≤ x ≤ g2(y), c ≤ y ≤ d} , gi, i = 1, 2, is continuous .

More complicated regions could be decomposed to a union of Type I and Type II regions,
with the help from Theorem 1.8.

Theorem 1.9. (Fubini’s Theorem)

(a) Let D be a Type I region. For a continuous function f in D,

¨
D

f(x, y) dA =

ˆ b

a

ˆ f2(x)

f1(x)

f(x, y) dydx .

(b) Let D be a Type II region. For a continuous function F in D,

¨
D

f(x, y) dA =

ˆ d

c

ˆ g2(y)

g1(y)

f(x, y) dxdy .
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Proof. We prove (a) only. Let R = [a, b] × [c, d] be a rectangle containing the Type I
region D. By Theorem 1.4, Fubini’s Theorem on a rectangle,¨

D

f(x, y) dA =

¨
R

f̃(x, y) dA

=

ˆ b

a

ˆ d

c

f̃(x, y) dA

=

ˆ b

a

(ˆ f1(x)

c

f̃(x, y) dA+

ˆ f2(x)

f1(x)

f̃(x, y) dA+

ˆ d

f2(x)

f̃(x, y) dA

)

=

ˆ b

a

ˆ f2(x)

f1(x)

f(x, y) dA.

Example 1.3 Evaluate ¨
D

(2y + 1) dA ,

where D is the region bounded by y = 2x and y = x2.

The curves of y = 2x and y = x2 intersect at (0, 0) and (0, 2). The region of integration
is expressed as

D = {(x, y) : x2 ≤ y ≤ 2x, x ∈ [0, 2] } .
By Fubini’s Theorem, ¨

D

(2y + 1) dA =

ˆ 2

0

ˆ 2x

x2
(2y + 1) du dx

=

ˆ 2

0

(y2 + y)
∣∣∣2x
x2
dx

=
28

5
.

The region D can also be expressed as

D = {(x, y) :
y

2
≤ x ≤ √y, y ∈ [0, 4]}.

We have ¨
D

(2y + 1) dA =

ˆ 4

0

ˆ √y
y/2

(2y + 1) dx dy

=

ˆ 4

0

(2y + 1)

ˆ √y
y/2

dx dy

=

ˆ 4

0

(2y + 1)(
√
y − y

2
) dy

=
28

5
.
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Example 1.4 Evaluate the iterated integral

ˆ 1

0

ˆ 1

y

sinx

x
dxdy .

It is hard to integrate sin x/x, so we switch the order of integration. First, recognize
this iterated integral is equal to the double integral

¨
D

sinx

x
dA ,

where D is the triangle bounded between y = 0, y = x for x ∈ [0, 1]. By Fubini’s Theorem,

ˆ 1

0

ˆ 1

y

sinx

x
dxdy =

¨
D

sinx

x
dA

=

ˆ 1

0

ˆ x

0

sinx

x
dydx

=

ˆ
sinx

x
× x dx

=

ˆ 1

0

sinx dx

= 1− cos 1 .

Example 1.5 Evaluate the double integral

¨
D

x dA ,

where D is the region bounded by y = 0, x+ y = 0, and the unit circle on the half plane
x ≥ 0.

The line x+ y = 0 intersection the circle x2 + y2 = 1 at (
√

2/2,−
√

2/2), so D can be
described as

D = {(x, y) : −y ≤ x ≤
√

1− y2, y ∈ [−
√

2/2, 0]} .

Hence,

¨
D

x dA =

ˆ 0

−
√

2/2

ˆ √1−y2

−y
x dxdy

=
1

2

ˆ 0

−
√

2/2

(1− y2 − y) dy

=

√
2

6
.
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If one insists to integrate in y first, we observe that D can be expression as the union
of D1 and D2:

D1 = {(x, y) : 0 ≤ y ≤ −x, x ∈ [0,
√

2/2]}
and

D2 = {(x, y) : −
√

1− x2 ≤ y ≤ 0, x ∈ [
√

2/2, 1]} .
We have ¨

D

x dA =

¨
D1

x dA+

¨
D2

x dA

=

ˆ √2/2

0

ˆ 0

−x
x dydx+

ˆ 1

√
2/2

ˆ 0

−
√

1−x2
x dydx

=

ˆ √2/2

0

x2 dx+

ˆ 1

√
2/2

x
√

1− x2 dx

=

√
2

6
.

Example 1.6 Find the area of the region which is bounded between y = x2−4, y = x2−1
and x ≥ 0, y ≤ 0.

After sketching the figure, we see that the area of this region D is given by

¨
D

1 dA =

ˆ 1

0

ˆ x2−1

x2−4

dydx+

ˆ 2

1

ˆ 0

x2−4

dydx .

A straightforward calculation yields
¨
D

1 dA =
14

3
.

As an application of what has been developed, we introduce a definition of the area
of a set. Let E be a nonempty set in R2 (actually in Rn). E is called rectifiable if χE is
integrable. For a rectifiable set E, its area is given by

|E| =
¨
E

1 dA =

¨
R

χE dA , E ⊂ R.

We know that every region is rectifiable since its boundary is composed of piecewise
C1-curves. An interesting property is the Euclidean invariant of area. Any Euclidean
motion is a composition of translation, rotation and reflection with respect to the x- and
y-axes. One can show that the area of a rectifiable set is invariant under any Euclidean
motion. This looks like an obvious fact, but can you prove it?
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By introducing curves on a region D, D can be decomposed into a union of subregions
Dk whose interiors are mutually disjoint. We may call {Dk} a generalized partition on D.
(A partition divides the rectangle into subrectangles Rij, i = 1, · · · , n, j = 1, · · · ,m, but
now we cannot use i, j as indices, so we use a single index instead.) Choosing a tag point
pk from each Dk we can form a generalized Riemann sum R(f, P ) =

∑
k f(pk)|Dk| for

any bounded function f in D. Denote by ‖P‖ the maximum among all diameters of Dk’s.

In case the region is a rectangle R, the diameter of the subrectangle Rij is
√

∆x2
i + ∆y2

j ,

hence the norm ‖P‖ is small if and only if the maximum of all diameters are small. We
see that in measuring smallness, the norm defined here is equivalent to the one defined
before.

Theorem 1.10. Let f be continuous in a region D and let P be a generalized partition
in D. For ε > 0, there is some δ > 0 such that

∣∣∣∣R(f, P )−
¨
D

f dA

∣∣∣∣ < ε , ∀P, ‖P‖ < δ .

We will use the following fact: Let M and m be the maximum/minimum of a con-
tinuous f in D. Then for any α ∈ [m,M ], there is some z ∈ D such that f(z) = α. It
sounds quite natural. For, let m = f(p) and M = f(q) where p, q are two points in D.
We connect p to q by a continuous curve C in D. As we go along C from p to q, the
values of f changes continuously from m to M . Since f is continuous and α lies between
m and M , there must a point z on C such that f(z) = α.

Proof. By the Uniform Continuity Theorem (which continues to hold on a region), given
ε′ > 0, there is some δ such that |f(x, y)− f(x′, y′)| < ε′ whenever (x, y) and (x′, y′) are
two points in D whose distance is less than δ. We will take ε′ = ε/|D| where ε > 0 is
given.

Now, let mk and Mk be the minimum and maximum of f over Dk. From mk ≤ f ≤Mk

in Dk, we integrate over Dk to get

mk|Dk| ≤
¨
Dk

f dA ≤Mk|Dk| .

By what we have said above, there is some f(p∗k) ∈ Dk such that

f(p∗k) =
1

|Dk|

¨
Dk

f dA .
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Therefore, for any Riemann sum R(f, P ) =
∑

k f(q∗k)|Dk| with ‖P‖ < δ, we have∣∣∣∣∣∑
k

f(q∗k)|Dk| −
¨
D

f dA

∣∣∣∣∣
=

∣∣∣∣∣∑
k

f(q∗k)|Dk| −
∑
k

f(p∗k)|Dk|

∣∣∣∣∣
=

∣∣∣∣∣∑
k

(f(q∗k)− f(p∗k))|Dk|

∣∣∣∣∣
<

∑
k

ε

|D|
|Dk|

=
ε

|D|
|D| = ε ,

and the desired result follows.

We also have

Theorem 1.11. Let f and g be two continuous functions in the region D. Let pk and qk
be tag points for the generalised partition P . Then

lim
‖P‖→0

∑
k

f(pk)g(qk)|Dk| =
¨
D

fg dA .

Note that here the functions f and g take different tag points.

Proof. We need to show that for any ε > 0, there is some δ such that∣∣∣∣∣∑
k

f(pk)g(qk)|Dk| −
¨
D

fg dA

∣∣∣∣∣ < ε , ∀P, ‖P‖ < δ.

Since fg is continuous so integrable in D, we can find δ1 such that∣∣∣∣∣∑
k

f(pk)g(pk)|Dk| −
¨
D

fg dA

∣∣∣∣∣ < ε

2
, ∀P, ‖P‖ < δ1.

On the other hand, by the Uniform Continuity Theorem, there is some δ2 such that

|g(p)− g(q)| < ε

2M |D|
, |p− q| < δ2 ,
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where M is a bounded on |f |. Therefore, for P satisfying ‖P‖ < δ = min{δ1, δ2},∣∣∣∣∣∑
k

f(pk)g(qk)|Dk| −
¨
D

fg dA

∣∣∣∣∣
≤

∣∣∣∣∣∑
k

f(pk)(g(qk)− g(pk))|Dk|

∣∣∣∣∣+

∣∣∣∣∣∑
k

f(pk)g(pk)|Dk| −
¨
D

fg dA

∣∣∣∣∣
≤ ε

2M |D|
×M |D|+ ε

2
< ε ,

done.

1.5 Double Integral in the Polar Coordinates

Each point in the plane (x, y) (except (0, 0)) can be expressed as x = r cos θ and y = r sin θ
for a unique pair (r, θ), r > 0, θ ∈ [0, 2π). (r, θ) is called the polar coordinates of (x, y).
Let Φ be the map Φ(r, θ) = (r cos θ, r sin θ). It maps the strip [0,∞)× [0, 2π] onto R2 and
is one-to-one from (0,∞)×[0, 2π) onto R2\{(0, 0)}. Alternatively, it maps [0,∞)×[−π, π]
onto R2 and is one-to-one from (0,∞)× (−π, π] onto R2 \ {(0, 0)}. A curve expressed in
polar coordinates could look very different from its form in rectangular coordinates. Here
are some examples.

• The horizontal line y = c 6= 0 becomes r = c/ sin θ, θ ∈ (0, π) in polar coordinates.

• The circle x2 + y2 = a2 becomes r = a .

• The circle (x− a/2)2 + y2 = a2/4 becomes r = a cos θ, θ ∈ [−π/2, π/2] .

• The parabola y = a2 − x2 becomes

r(θ) =
− sin θ +

√
sin2 θ + 4a2 cos2 θ

2 cos2 θ
, θ ∈ [0, 2π], θ 6= 3π/2 .

Note that the ray at θ = 3π/2 does not hit the parabola.

Sometimes a curve is simpler when expressed in polar coordinates. For instance, the
cardioid is

r = 1 + a cos θ, θ ∈ [0, 2π],

where a ∈ (0, 1]. To express it in rectangular coordinates, we proceed as follows. First,
multiple the equation by r to get

x2 + y2 =
√
x2 + y2 + ax .
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Then move ax to the left and square to get

(x2 + y2 − ax)2 = x2 + y2 .

In the rectangular coordinates, the cardioid is a quartic equation.

A rectangle R = [r1, r2]× [θ1, θ2] in the (r, θ)-plane is mapped under Φ to the region

S = {(x, y) : x = r cos θ, y = r sin θ, r1 ≤ r ≤ r2, θ1 ≤ θ ≤ θ2, θ1, θ2 ∈ [0, 2π)} .

Any partition P on R introduces a generalized partition on S via Φ. Denote its subregions
by Sij = Φ(Rij).

Theorem 1.12. Let f be a bounded function which is continuous in S except along some
piecewise C1-curves. Then

¨
S

f(x, y) dA =

¨
R

f(r cos θ, r sin θ)r drdθ .

Proof. Let us assume f is continuous in S. The area of Sij is given by

1

2
r2
i+1∆θj −

1

2
r2
i∆θj =

1

2
(ri+1 + ri)∆ri∆θj .

Let P be a partition on R with tags τij tags for Rij. Then pij = Φ(τij) is a tag for Sij.
When ‖P‖ is small, the generalized partition Sij = Φ(Rij) is also small in norm. We have

¨
S

f(x, y) dA ≈
∑
i,j

f(pij)|Sij| =
∑
i,j

f(Φ(τij))r
∗
i∆ri∆θj ,

where r∗i = (ri + ri+1)/2. This sum can be viewed as
∑

i,j h(τij)g(r∗i , θ
∗
j ) where h(r, θ) =

f(Φ(r, θ)) and g(r, θ) = r . We choose some θ∗j to make (r∗i , θ
∗
j ) a tag point in Rij. Since

f ◦ Φ is continuous in R, By Theorem 1.11, as ‖P‖ → 0,∑
i,j

f(Φ(τij))r
∗
i∆ri∆θj =

∑
i,j

h(τij)g(r∗i , θ
∗
j )∆ri∆θj

→
¨
R

h(r, θ)g(r, θ) dA(r, θ)

=

¨
R

f(Φ(r, θ))r dA(r, θ) .

On the other hand,∑
i,j

f(Φ(τij))r
∗
i∆ri∆θj =

∑
i,j

f(pij)|Sij| →
¨
S

f(x, y) dA ,

the theorem holds.
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When a region D is expressed as

{(x, y) : x = r cos θ, y = r sin θ, ϕ1(θ) ≤ r ≤ ϕ2(θ), θ1 ≤ θ ≤ θ2, θ1, θ2 ∈ [0, 2π)} .

We have

Theorem 1.13. For a continuous function f in D,

¨
D

f(x, y) dA(x, y) =

ˆ θ2

θ1

ˆ ϕ2(θ)

ϕ1(θ)

f(r cos θ, r sin θ)r drdθ .

Proof. Pick r1 < r2 so that the sector S formed by r1, r2, θ1, and θ2 contains D. Let D̃
be the preimage of D under Φ. Then D̃ is of the form

{(r, θ) : ϕ1(θ) ≤ r ≤ ϕ2(θ), θ1 ≤ θ ≤ θ2}

and is contained in the rectangle [r1, r2]× [θ1, θ2]. Let f̃ be the usual extension of f being
zero outside D. We have¨

D

f(x, y) dA(x, y) =

¨
S

f̃(x, y) dA(x, y)

=

¨
R

f̃(r cos θ, r sin θ)r dA(r, θ)

=

ˆ θ2

θ1

ˆ r2

r1

f̃(r cos θ, r sin θ)rdrθ

=

ˆ θ2

θ1

(ˆ ϕ1(θ)

r1

+

ˆ ϕ2(θ)

ϕ1(θ)

+

ˆ r2

ϕ2(θ)

)
f̃(r cos θ, r sin θ)rdrdθ

=

ˆ θ2

θ1

ˆ ϕ2(θ)

ϕ1(θ)

f(r cos θ, r sin θ)rdrdθ .

Example 1.6 Find the area of the lemniscate r2 = 4 cos 2θ .

Always sketch the figure before integrating. The lemniscate is a two-leaves like figure
symmetric with respect to both axes. For θ ∈ [0, 2π], 2θ ∈ [0, 4π]. We see that cos 2θ is
nonnegative on the intervals [0, π/4], [3π/4, π], [π, 5π/4], [7π/4, 2π] only. By symmetry it
suffices to integrate over the range θ ∈ [0, π/4]. Any ray emitting from the origin with
θ ∈ [0, π/4] hits the lemniscate at one point. Hence the area of the lemniscate is given by

¨
D

dA = 4

ˆ π/4

0

ˆ (4 cos 2θ)1/2

0

r drdθ

= 4

ˆ π/4

0

1

2
× 4 cos 2θ dθ

= 4 .
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Example 1.7 Evaluate the iterated integral

ˆ 2

1

ˆ √2x−x2

0

y dydx .

We use polar coordinates to evaluate this integral. First of all, the graph of y =
√

2x− x2

is the circle of radius 1 at (1, 0). The region of integration is given by

G = {(x, y) : 0 ≤ y ≤
√

2x− x2 , x ∈ [1, 2]} .

To express it in polar coordinates, observe that every ray with θ ∈ [0, π/4] first hits the
vertical line x = 1 and then the circle. A ray out of this range does not hit G. In
polar coordinates, x = 1 is given by r = 1/ cos θ and y =

√
2x− x2 becomes r = 2 cos θ.

Therefore,

ˆ 2

1

ˆ √2x−x2

0

y dydx =

¨
G

y dA

=

ˆ π/4

0

ˆ 2 cos θ

1/ cos θ

r sin θ r drdθ

=

ˆ π/4

0

1

3

(
8 cos3 θ − 1

cos3 θ

)
sin θ dθ

=
1

2
− 1

6

=
1

3
.

Example 1.8 Find the area pinched between the curves r = 3/2 and r = 1 + cos θ .

The circle r = 3/2 and the cardioid r = 1+cos θ intersect 1+cos θ = 3/2 at θ = ±π/3.
When θ ∈ [−π/3, π/3], the cardioid lies on outside and the circle inside. When θ ∈ [π/3, π]
or [−π,−π/3], the circle lies outside and the cardioid inside. By symmetry, it suffices to
calculate things in the first and the second quadrants. We have

1

2
Area =

ˆ π/3

0

ˆ 1+cos θ

3/2

r drdθ +

ˆ π

π/3

ˆ 3/2

1+cos θ

r drdθ

=
1

2

ˆ π/3

0

(
− 3

4
+ 2 cos θ +

1

2
cos 2θ

)
dθ

+
1

2

ˆ π

π/3

(3

4
− 2 cos θ − 1

2
cos 2θ

)
dθ

=
π

8
+

5
√

3

4
.

Hence the area is given by (π + 10
√

3)/4.
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Example 1.9. Express the integral

ˆ √5

0

ˆ 5

x2
f(x, y) dydx

in polar coordinates.

Well, the region is the one sitting in the first quadrant bounded by the y-axis, hori-
zontal line y = 5 and the parabola y = x2. The latter two curves intersect at (

√
5, 5) and

(−
√

5, 5). Any ray from θ ∈ [0, α], α = tan−1
√

5/5, hits the parabola once. On the other
hand, any ray from θ ∈ [α, π/2] hits the horizontal line y = 5 once. We have

ˆ √5

0

ˆ 5

x2
f(x, y) dydx

=

ˆ α

0

ˆ sin θ/ cos2 θ

0

f(r cos θ, r sin θ)r drdθ +

ˆ π/2

α

ˆ 5/ sin θ

0

f(r cos θ, r sin θ)r drdθ .

1.6 Improper Integral

In Riemann integrals the functions under consideration are always bounded and the re-
gions of integration are bounded. In practise we need to consider some situations either the
functions or the regions are unbounded. In this section we consider two typical situations.
First, the function becomes infinity at a point (point singularity). Second, unbounded
regions.

Let D be a bounded region and f a function in D which is continuous everywhere
except at a point p0 = (x0, y0) and f(x, y) becomes positive or negative as (x, y)→ (x0, y0).
We say the improper integral of f over D exists if

lim
a→0

¨
D\Da

f(x, y) dA

exists, where Da is the disk of radius a centered at p0. When it holds, let
¨
D

f dA = lim
a→0

¨
D\Da

f(x, y) dA . (1.2)

We use the same notation to denote the improper integral whenever it exists.

Example 1.9 Determine the range of α such the improper integral
¨
D

(x2 + y2)α dA ,

where D is any region containing the origin.
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When α ≥ 0, the integrand is continuous. We do not have to consider its improper
integrability. So we always assume α < 0. It is also clear it suffices to take D to be the
disk of radius 1 at the origin. Introducing polar coordinates, when 2α 6= −1,

¨
D\Da

(x2 + y2)α dA =

ˆ 2π

0

ˆ 1

a

r2αr drdθ

=
2π

2α + 2

(
1− a2α+2

)
→ π

α + 1
,

if and only if α + 1 > 0. Hence the improper integral exists for α ∈ (−1, 0). When
α = −1, we have instead

¨
D\Da

(x2 + y2)α dA = 2π| log a| → ∞ ,

as a→ 0. The improper integral does not exist when α = −1.

Next, when the region D is unbounded, we call the improper integral exists if

¨
D

f dA = lim
a→∞

¨
D∩Da

f dA . (1.3)

We consider an interesting case.

Example 1.10 Evaluate ˆ ∞
−∞

e−x
2

dx .

This is an improper integral of a single variable. The trick is to make it a double integral.
We have ¨

Da

e−x
2−y2 dA =

ˆ 2π

0

ˆ a

0

e−r
2

r drdθ = π(1− e−a2)→ π ,

as a→∞. It follows that the improper integral

¨
R2

e−x
2−y2 dA

exists and is equal to π. Let Ra be the square with side length 2a at the origin. Using
Da ⊂ Ra ⊂ D√2a, we see that

lim
a→∞

¨
Ra

e−x
2−y2 dA = lim

a→∞

¨
Da

e−x
2−y2 dA = π .
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Now,
ˆ a

−a
e−x

2

dx×
ˆ a

−a
e−y

2

dy =

ˆ a

−a

ˆ a

−a
e−x

2+y2 dydx

=

¨
Ra

e−x
2−y2 dA

→ π .

We conclude that ˆ ∞
−∞

e−x
2

dx =
√
π . (1.4)

1.7 Triple Integrals

The theory of triple integrals is essentially the same as the double integral. It suffices
to point out that a region in space is bounded by one or several closed surfaces, each of
which are composed of pieces of C1-surfaces meet along some C1-curves. We will not give
a precise definition here, but the concept is clear in a intuitive way. Let us look at some
examples:

• The sphere {(x, y, z) : (x−1)2 +(y− b)2 +(z− c)2 = r2} is a C1-surface with center
(a, b, c) and radius r. The region bounded by the sphere is a ball.

• The rectangular box is the region bounded by the planes x = a, b, y = c, d, z = e, f .
Its boundary is composed by six pieces of C1-surfaces (rectangles in fact) meeting
along line segments.

• The circular cone {(x, y, z) : z =
√
x2 + y2} is an unbounded surface which has a

sharp corner at the origin. We could truncate it to get a bounded one {(x, y, z) :
z =

√
x2 + y2, z = h} to get a region bounded by two surfaces, one being the

circular cone and the other the plane z = h

• The torus obtained by rotating the circle (y−a)2 +z2 = b2, a < b, around the z-axis.
It is a C1-surface which bounds a region.

Parallel to the double integral, a rectangular box B is given by [a, b] × [c, d] × [e, f ]
and a partition P on B is the collection of points

a = x0 < x1 < · · · < xn = b, c = y0 < y1 < · · · < ym = d, e = z0 < z1 < · · · < zl = f .

The partition P divides B into subrectangular boxes Bijk = [xi, xi+1]×[yj, yj+1]×[zk, zk+1].
For a bounded function f in B, its Riemann sum is given by

R(f, P ) =
∑
i,j,k

f(pijk)|Bijk|, ,
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where |Bijk| = ∆xi∆yj∆zk. The function f is called integrable if there is a number α
such that for every ε > 0, there is some δ > 0 such that

|
∑
i,j,k

f(pijk)|Bijk| − α| < ε , ∀P, ‖P‖ < δ ,

where ‖P‖ is the maximum among all ∆xi,∆yj,∆zk. The integral α will be denoted by
˚

B

f dV, or

˚
B

f(x, y, z) dV, or

˚
B

f(x, y, z) dV (x, y, z) .

The analog of Theorems 1.1, 1.2, and 1.3 hold for triple integrals, and I trust you to
formulate them. We also have

Theorem 1.14. (Fubini’s Theorem) Let f be a continuous function in a rectangular
box B. Then

˚
R

f dV =

¨
R

ˆ f

e

f(x, y, z) dz dA(x, y) (R = [a, b]× [c, d])

=

ˆ b

a

ˆ d

c

ˆ f

e

f(x, y, z) dz dA(x, y) .

This theorem still holds for bounded functions that are continuous everywhere except
at some surfaces, curves or points in B. No new ideas are involved in the proof. Let us
sketch the proof. The triple integral can be approximated by Riemann sums. Taking tags
of the form (x∗i , y

∗
j , z
∗
k), we have

˚
R

f dV ≈
∑
i,j,k

f(x∗i , y
∗
j , z
∗
k)∆xi∆yj∆zk =

∑
i,j

(∑
k

f(x∗i , y
∗
j , z
∗
k)∆zk

)
∆xi∆yj .

When ‖P‖ is very small, ∆xi,∆yj,∆zk are also very small,

∑
i,j

(∑
k

f(x∗i , y
∗
j , z
∗
k)∆zk

)
∆xi∆yj ≈

∑
i,j

ˆ f

e

f(x∗i , y
∗ − j, z) dz ∆xi∆yj

≈
¨
R

(ˆ f

e

f(x, y, z)dz

)
dA(x, y) .

A similar result holds when the order of x, y and z are interchanged.

This formula reduces the evaluation of a triple integral to a single integral and a double
integrable. A further application reduces the double integral to two single integrals.

For functions defined in a region Ω in space, we take a rectangular box B containing
Ω and define
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˚
Ω

f(x, y, z) dV =

˚
B

f̃(x, y, z) dV ,

where f̃ is the trivial extension of f to the entire space (that is, setting f̃ = 0 outside Ω).

For a region of the form

Ω = {(x, y, z) : f1(x, y) ≤ z ≤ f2(x, y), (x, y) ∈ D} ,

where D is a region in the plane, Fubini’s theorem becomes˚
Ω

f(x, y, z) dV =

¨
D

ˆ f2(x,y)

f1(x,y)

f(x, y, z) dz dA(x, y) . (1.5)

Corresponding formulas when the role of z = fi(x, y) is replaced by y = gi(x, z) or
x = hi(y, z), i = 1, 2, hold.

When f is positive, the triple integral˚
Ω

f dV

gives the mass of Ω with density f . When f ≡ 1,

|Ω| ≡
˚

Ω

dV

is the volume of the region Ω.

Example 1.11 Evaluate ˚
Ω

xy dV

in two ways: dzdA(x, y) and dxdA(y, z) where Ω is the region bounded between x+ 2y+
3z = 1 and the coordinate planes in x, y, z ≥ 0.

The region Ω is given by

Ω = {(x, y, z) : 0 ≤ z ≤ (1− x− 2y)/3, (x, y) ∈ D} ,

where D is the triangle with vertices at (0, 0), (1, 0), (0, 1/2) in the xy-plane. By Fubini’s
Theorem, ˚

Ω

xy dV =

¨
D

ˆ (1−x−2y)/3

0

xy dz dA(x, y)

=
1

3

¨
D

xy(1− x− 2y) dA

=
1

3

ˆ 1

0

ˆ (1−x)/2

0

xy dydx

=
1

144
.
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Next, Ω projects to the triangle ∆ with vertices at (0, 0), (1/2, 0), (0, 1/3) in the yz-
plane. We have

Ω = {(x, y, z) : 0 ≤ x ≤ 1− 2y − 3z, (y, z) ∈ ∆} .

˚
Ω

xy dV =

¨
∆

ˆ 1−2y−3z

0

xy dx dA(y, z)

=

¨
∆

1

2
(1− 2y − 3z)2 dA

=

ˆ 1/2

0

ˆ (1−2y)/3

0

1

2
(1− 2y − 3z)2 dz dy

=
1

144
.

Example 1.11’ Express the triple integral of a function f over the tetrahedron formed
by the vertices (0, 0, 0), (0, 1, 0), (1, 1, 0) and (0, 1, 1) by an iterated integral in dzdydx.

The tetrahedron T has four faces given by triangles lying in the xy-plane, yz-plane,
the plane y = 1 and the plane x − y + z = 0. See the figure in pg 912, Text. When
projecting onto the xy-plane, it is described by f1(x, y) ≡ 0 ≤ z ≤ f2(x, y) ≡ y − z over
the triangle ∆ with vertices at (0, 0), (0, 1) and (1, 1). Therefore,

˚
T

f(x, y, z) dV =

¨
∆

ˆ y−z

0

f(x, y, z) dzdA(x, y) =

ˆ 1

0

ˆ y

0

ˆ y−x

0

f(x, y, z) dzdydx .

We may also express the triple integral in other orders. For instance, we have

˚
T

f(x, y, z) dV =

ˆ 1

0

ˆ y

0

ˆ y−z

0

f(x, y, z) dxdzdy ,

and ˚
T

f(x, y, z) dV =

ˆ 1

0

ˆ 1−x

0

ˆ 1

x+z

f(x, y, z) dydzdx .

When the region D can be expressed in polar coordinates, for instance, it is of the
form

{(r cos θ, r sin θ) : h1(θ) ≤ r ≤ h2(θ), θ ∈ [θ1, θ2]} ,
(1.5) becomes

˚
Ω

f dV =

ˆ θ2

θ1

ˆ h2(θ)

h1(θ)

ˆ f2(r cos θ,r sin θ)

f1(r cos θ,r sin θ)

f(r cos θ, r sin θ, z)r dz drdθ . (1.6)

The representation of a point (x, y, z) in the form (r, θ, z) is called the cylindrical
coordinates of (x, y, z).
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Example 1.12 Find the volume of the region R bounded between z =
√
x2 + y2 and

x2 + y2 + z2 = 2.

These two graphs intersect at z = 1 and its projection to the xy-plane is the disk
x2 + y2 ≤ 1. Using cylindrical coordinates,

|R| =

˚
R

1 dV

=

ˆ 2π

0

ˆ 1

0

ˆ √2−r2

r

r dz drdθ

= 2π

ˆ 1

0

(
√

2− r2 − r)r dr

=
2
√

2

3
.

Another useful special coordinates is the spherical coordinates.

For each (x, y, z) in R3, we can find (ρ, ϕ, θ) ∈ [0,∞) × [0, π] × [0, 2π] such that
x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ. (ρ, ϕ, θ) is called the spherical coordinates
of (x, y, z). These formulas set up a mapping Φ from [0,∞)× [0, π]× [0, 2π] to R3. It is
one-to-one and onto R3 (with the origin removed) when restricted to (0,∞)×[0, π]×[0, 2π).

Let Ω1 and Ω be two regions in (ρ, ϕ, θ)-space and (x, y, z)-space respectively that
satisfy Φ(Ω1) = Ω. Given any function f in the (x, y, z)-space, f ◦ Φ becomes a function
in the (ρ, ϕ, θ)-space. The following formula holds:

˚
Ω

f(x, y, z) dV =

˚
Ω1

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdV (ρ, ϕ, θ) .

In applications, the region Ω is usually of the form:

Ω = {(x, y, z) : ρ1(ϕ, θ) ≤ ρ ≤ ρ2(ϕ, θ), (ϕ, θ) ∈ D },

for some region D. Then we have

Theorem 1.15. For a continuous function f in Ω,

˚
Ω

f(x, y, z) dV =

¨
D

ˆ ρ2(ϕ,θ)

ρ1(ϕ,θ)

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρdA(ϕ, θ) .

(1.7)

We refer to the text book for a proof of this theorem. We will re-derive it in the next
chapter when we discuss the change of variables formula.
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Example 1.13 Use spherical coordinates to find the volume of the circular cone whose
base radius is R and height h.

In rectangular coordinates, the solid cone is described as

Ω = {(x, y, z) :
h

R

√
x2 + y2 ≤ z ≤ h, x2 + y2 ≤ R2} .

In spherical coordinates, it is

Ω̃ = {(ρ, ϕ, θ) : 0 ≤ ρ ≤ ρ2(ϕ, θ), 0 ≤ ϕ ≤ ϕ0, 0 ≤ θ ≤ 2π }.

Here z = h turns into ρ2 cosϕ = h, that is,

ρ2(ϕ, θ) =
h

cosϕ
.

On the other hand, ϕ0, which is determined by the perpendicular triangle with sides R
and H, satisfies h tanϕ0 = R. Hence

ϕ0 = tan−1R/h.

Only rays from the original can hit z = h when ϕ ∈ [0, ϕ0]. Henceforth, the volume of
the circular cone is given by

|Ω| =

ˆ 2π

0

ˆ ϕ0

0

ˆ h/ cosϕ

0

1× ρ2 sinϕdρdϕdθ

= 2π

ˆ ϕ0

0

1

3

h3 sinϕ

cos3 ϕ
dϕ

=
1

3
πR2h .

Example 1.14 Express the integral

ˆ 3

0

ˆ √9−y2

0

ˆ √18−x2−y2

√
x2+y2

f(x, y, z) dzdxdy

in cylindrical and spherical coordinates.

This is an ice-cream cone given by

{(x, y, z) :
√
x2 + y2 ≤ z ≤

√
18− x2 − y2, 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π},

in cylindrical coordinates. Therefore, this integral is equal to

ˆ 2π

0

ˆ 3

0

ˆ √18−r2

r

f(r cos θ, r sin θ, z)r dzdrdθ .
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Next, in spherical coordinates, the ice-cream is described by

{(x, y, z) : 0 ≤ ρ ≤ ρ2, 0 ≤ ϕ ≤ ϕ0, 0 ≤ θ ≤ 2π }.

Here ρ2 describes the surface of the ice-cream which is given by ρ2 =
√

18. On the other
hand, x2+y2 = 18−x2−y2 implies x2+y2 = 9. That is, the circular cone and the spherical
intersect at a disk of radius of 3 centered at the origin. The angle ϕ0 is determined from
the perpendicular triangle with sides 3 and z = 3, hence ϕ0 = π/4. Our integral is equal
ton ˆ 2π

0

ˆ π/4

0

ˆ √18

0

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρdϕdθ ,

in spherical coordinates.

Example 1.15 Express the triple integral of a function f over the region which is
bounded between z = 3, z = 0 and x2 + y2 + z2 = 16 in spherical coordinates.

The sphere x2 + y2 + z2 = 16 and z = 3 intersects at a circle which is projected down
to the xy-plane as x2 + y2 = 16− 9 = 7. Any ray of ϕ ∈ [0, ϕ0], ϕ0 = sin−1

√
7/4, hits the

sphere. On the other hand, any ray of ϕ ∈ [ϕ0, π/2] hits the plane z = 3 or ρ = 3/ cosϕ.
Therefore, the triple integral is the sum of two integrals given by

˚
Ω

f dV =

ˆ 2π

0

ˆ π/2

ϕ0

ˆ 4

0

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρdϕdθ

+

ˆ 2π

0

ˆ ϕ0

0

ˆ 3/ cosϕ

0

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρdϕdθ .

Example 1.16 The same setting as in the previous example but now the region is the
portion bounded between the sphere and the plane z = 3.

Now, observe every ray from the origin hits the plane z = 3 and then the sphere ρ = 4
when ϕ ∈ [0, ϕ0] and none otherwise. The triple integral should be

ˆ 2π

0

ˆ ϕ0

0

ˆ 4

3/ cosϕ

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρdϕdθ .

1.8 A Variant Of Fubini’s Theorem

In the derivation of the formula in Theorem 1.14, if we put the bracket differently, we will
have

˚
B

f dV ≈
∑
i,j,k

f(x∗i , y
∗
j , z
∗
k)∆xi∆yj∆zk =

∑
k

(∑
i,j

f(x∗i , y
∗
j , z
∗
k)∆xi∆yj

)
∆zk .
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When ‖P‖ is very small, ∆xi,∆yj,∆zk are also very small,

∑
k

(∑
i,j

f(x∗i , y
∗
j , z
∗
k)∆xi∆yj

)
∆zk ≈

∑
k

¨
R

f(x, y, z∗)∆zk ,

where R = [a, b]× [c, d]. Letting ‖P‖ → 0, we get

˚
B

f dV =

ˆ f

e

(¨
R

f(x, y, z)dz

)
dA(x, y) dz .

When f is defined in Ω, let

Ω(z) = {(x, y) : (x, y, z) ∈ Ω}

the z-cross section of Ω. Suppose that Ω(z) is a region for each z ∈ [e, f ] and becomes
empty elsewhere. We have the formula

˚
Ω

f dV =

ˆ f

e

¨
Ω(z)

f(x, y, z) dA(x, y) dz . (1.8)

Taking f ≡ 1, the volume of Ω can be expressed as an integral of the area of its cross
sections:

|Ω| =
ˆ f

e

|Ω(z)| dz . (1.9)

Example 1.14 Find the volume of the cone whose vertex is (0, 0, h) and base is a region
D in the xy-plane.

By proportion, a line of length l on the xy-plane and the length x of its corresponding
line in the xy-plane at z satisfy

h

h− z
=
l

x
,

that is, x = l(h− z)/h. Therefore, the area of the cross section of the cone at z is equal
to

(h− z)2

h2
|D| .

The volume of the cone is
ˆ h

0

(h− z)2

h2
|D| dz =

1

3
|D|h .

Example 1.15 Show the volume of the ball {(x, y, z, w) : x2 + y2 + z2 +w2 ≤ r2} in R4

is given by π2r4/2.
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It suffices to calculate the volume for the upper half ball. For each w ∈ [0, r], the cross
section B(w) is a three dimensional ball of radius

√
r2 − w2. Therefore, the volume of the

ball is equal to

2

ˆ r

0

4π

3
(r2 − w2)3/2 dw = 2

4π

3
r4

ˆ π/2

0

cos4 θ dθ

=
1

2
π2r4 .

1.9 A Characterization Of Riemann Integral

From the view point of an analyst, the interpretation of integrals as area is not satisfying,
let alone the physical point of view such as mass and centroid. Analysts would like to
understand Riemann integral (in all dimensions) what the view of point of analysis. Here
we present a theorem in this direction.

In the following we let V be the real vector space consisting of all piecewise continuous
functions which vanish outside some bounded set in the plane. We will work on this setting
for simplicity. You will see the same ideas also work in any dimension.

Theorem 1.16. Let T be a map from V to R satisfying the following properties:

1. (Linearity) T is linear.

2. (Positivity preserving) T (f) ≥ 0 provided f ∈ V is nonnegative.

3. (Translation invariant) T (f) = T (f ′) where f ′ is a translate of f .

4. (Normalization) T (χR0) = 1 where R0 = (0, 1)× (0, 1).

Then

T (f) =

¨
R

f dA

for all f ∈ V .

f ′ is a translate of f if f ′(p) = f(p+ p0) for some p0 ∈ R2.

Proof. Step 1. Divide R0 into n many subsquares where a typical one is (0, 1/n)×(0, 1/n)
and denote them by Rij. All Rij are translates of the typical one. By translational
invariance, all T (χRij

) are equal. Therefore, from ∪i,jRij ⊂ R0 and positivity preserving
we get

n2T (χ(0,1/n)2) ≤
∑
i,j

T (χRij
) ≤ T (χR0) = 1 ,
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which implies, together with translational invariance,

T (χS) ≤ 1/n2 ,

for any square S of the form (a, a+ 1/n)× (b, b+ 1/n).

Step 2. For any horizontal line segment L, T (χL) = 0. WLOG assume L is a natural
number. We can fully cover L by 2nL many squares Sk of side length 1/n. From L ⊂ ∪kSk
we get χL ≤

∑
k χSk

, so

T (χL) ≤ 2nL× T (χS1) ≤ 2L/n→ 0 , as n→∞.

Hence T (χL) = 0. The same result holds for vertical line segments.

Step 3. T (χS) = 1/n2 where S is a square of side 1/n, including or excluding its boundary
points. This follows from combining Step 1 and Step 2 since the boundary are horizontal
or vertical lines.

Step 4. Let R(a, b) be a rectangle of length a and height b. I leave it as an exercise to
show T (χR(a,b)) = ab. Show this for a, b rational numbers first and then for irrational
numbers.

Step 5. Let f be a continuous function vanishing outside some rectangle R. Let P be a
partition on R into Rij. Let mij and Mij be the minimum and maximum of f over Rij

respectively. From f ≤
∑

i,jMijχRij
we deduce

T (f) ≤ T (
∑
i,j

MijχRij
) =

∑
i,j

Mij|Rij| .

As ‖P‖ → 0, we get

T (f) ≤
¨
R

f dA .

On the other hand,
∑

i,jmijχR′
ij
≤ f where R′ij is the subrectangle without counting in

the boundary points. Then
∑

i,jmij|Rij| ≤ T (f). Letting ‖P‖ → 0, we get

¨
R

f dA ≤ T (f) .

We have proved the theorem for continuous functions. The general case can be estab-
lished via an approximation argument.


